A novel & active lab in the Nankai University. The lab uses molecular, biochemical, animal models and imaging approaches to understand the molecular mechanism and the physiological/pathological relevance of PI3K-AKT-mTORC1 pathway in the context of longevity.
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Swanson JA* and Yoshida S*. (2018). Macropinosomes as units of signal transduction. Philosophical Transactions of the Royal Society B. 374: 20180157 (review) *Co-corresponding Author
Yoshida S, Pacitto R, Sesi C, Kotula L, and Swanson J. (2018). Dorsal Ruffles Enhance Activation of Akt by Growth Factors. Journal of Cell Science. 131: jcs220517 doi: 10.1242/jcs.220517 *Co-corresponding Author Highlighted in “First Person” (J Cell Sci 2018 131: jcs226373) Highlighted in “Research Highlight” (J Cell Sci 2018 131: e2201)
Rosselli-Murai LK, Yates JA, Yoshida S, Bourg J, HoKKY, White M, Prisby J, Tan X, Altemuc M, Bao L, Wu ZF, Veatch SL, Swanson JA, Merajver SD, and Liu AP. (2018). Loss of PTEN promotes formation of signaling-capable clathrin-caoted pits. Journal of Cell Science. 131: jcs208926 doi: 10.1242/jcs.208926
Yoshida S, Pacitto R, Inoki K and Swanson J. (2018). Macropinocytosis, mTORC1 and Cellular Growth Control. Cellular and Molecular Life Sciences. 75: 1227-1239 doi: 10.1007/s00018-017-2710-7 (review)
Pacitto R, Gaeta I, Swanson JA and Yoshida S*. (2017). CXCL12-induced macropinocytosis modulates two distinct pathways to activate mTORC1 in macrophages. Journal of Leukocyte Biology. 101: 683-692 doi: 10.1189/jlb.2A0316-141RR *Corresponding Author Highlighted on the cover
Yao Y, Wang J, Yoshida S, Nada S, Okada M and Inoki K. (2016). Role of Ragulator in the Regulation of Mechanistic Target of Rapamycin Signaling in Podocytes and Glomerular Function. Journal of American Society of Nephrology. 27: 3653-3665 doi: 10.1681/ASN2015010032
Swanson JA and Yoshida S. (2016). Macropinocytosis. Encyclopedia of Cell Biology. (R.A. Bradshaw and P. Stahl, Eds.). 2: 758-765. (Book chapter)
Yoshida S, Pacitto R, Yao Y, Inoki K and Swanson JA. (2015). Growth Factor Signaling to mTORC1 by Amino Acid-laden Macropinosomes. Journal of Cell Biology. 211: 159-172. doi: 10.1083/jcb.201504097 Highlighted in “Research Round-up” (J Cell Biol. 2015. 211: 1)
Yoshida S, Gaeta I, Pacitto R, Krienke L, Alge O, Gregorka B and Swanson JA. (2015). Differential signaling During Macropinocytosis in Response to M-CAF and PMA in Macrophages. Frontiers in Physiology. 6:8. doi: 10.3389/fphys.2015.00008.
Huber TB, Edelstein CL, Hartleben B, Inoki K, Jiang M, Koya D, Kume S, Lieberthal W, Pallet N, Quiroga A, Ravichandran K, Susztak K, Yoshida S and Dong Z. (2012). Emerging role of autophagy in kidney function, diseases and aging. Autophagy. 8: 1009-1031. (Review)
Feliciano WD, Yoshida S, Straight SW, and Swanson JA. (2011). Coordination of the Rab5 cycle on macropinosomes. Traffic. 12:1911-1922. doi: 10.1111/j.1600-0854.2011.01280.x.
Yoshida S, Hong S, Suzuki T, Nada S, Mannan AM, Wang J, Okada M, Guan KL, and Inoki K. (2011). Redox regulates mTORC1 activity by modulating the TSC1/TSC2-Rheb pathway. Journal of Biological Chemistry. 286:32651-32660.
Inoki K, Mori H, Wang J, Suzuki T, Hong S, Yoshida S, Blattner SM, Ikenoue T, Ruegg MA, Hall MN, Kwiatkowski DJ, Rastaldi MP, Huber TB, Kretzler M, Holzman LB, Wiggins RC, Guan KL. (2011). mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. Journal of Clinical Investigation.121:2181-2196.
Narita M, Young AR, Arakawa S, Samarajiwa SA, Nakashima T,Yoshida S, Hong S, Berry LS, Reichelt S, Ferreira M, Tavare S, Inoki K, Shimizu S, Narita M. (2011). Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science. 332: 966-970.
Nagamatsu K, Kuwae A, Konaka T, Negal S, Yoshida S, Eguichi M, Watanabe M, Mimuro H, Koyasu S, Abe A. (2009). Bordetella evades the host immune system by inducing IL-10 through a type III effector, BopN. Journal of Experimental Medicine. 206:3073-3088.
Yoshida S, Hoppe AD, Araki N, and Swanson JA. (2009). Sequential signaling in plasma-membrane domains during macropinosome formation in macrophages. Journal of Cell Science. 122:3250-3261. doi: 10.1242/jcs.053207.
Yoshida S, Handa Y, Suzuki T, Ogawa M, Suzuki M, Tamai A, Abe A, Katayama E, and Sasakawa C. (2006). Microtubule-severing activity of Shigella is pivotal for intercellular spreading. Science. 314:985-989.
Matsuzawa T, Kuwae A, Yoshida S, Sasakawa C and Abe A. (2004). Enteropathogenic Escherichia coli activates the RhoA signaling pathway via the stimulation of GEF-H1. EMBO Joural. 23:3570-3582.
Yoshida S and Sasakawa C. (2003). Exploiting host microtubule dynamics: A new aspect of bacterial invasion. Trends in Microbiology. 11:139-143. (Review)
Yoshida S, Katayama E, Kuwae A, Mimuro H, Suzuki T, and Sasakawa C. (2002). Shigella delivers an effector protein to trigger host microtubule dynamic-instability, which promotes Rac1 activity and efficient bacterial internalization. EMBO Journal. 21:2923-2935.
Kuwae A, Yoshida S, Tamano K, Mimuro H, Suzuki T, and Sasakawa C. (2001). Shigella invasion of macrophage requires the insertion of IpaC into the host plasma membrane. Journal of Biological Chemistry. 276:32230-32239